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A B S T R A C T   

Digital Twins are complex digital representations of assets that are used by a variety of organi
zations across the Industry 4.0 value chain. As the digitization of industrial processes advances, 
Digital Twins will become widespread. As a result, there is a need to develop new secure data 
sharing models for a complex ecosystem of interacting Digital Twins and lifecycle parties. 
Decentralized Applications are uniquely suited to address these sharing challenges while ensuring 
availability, integrity and confidentiality. They rely on distributed ledgers and decentralized 
databases for data storage and processing, avoiding single points of trust. To tackle the need for 
decentralized sharing of Digital Twin data, this work proposes an owner-centric decentralized 
sharing model. A formal access control model addresses integrity and confidentiality aspects 
based on Digital Twin components and lifecycle requirements. With our prototypical imple
mentation EtherTwin we show how to overcome the numerous implementation challenges 
associated with fully decentralized data sharing, enabling management of Digital Twin compo
nents and their associated information. For validation, the prototype is evaluated based on an 
industry use case and semi-structured expert interviews.   

1. Introduction 

Industrial control systems (ICS) such as supervisory control and data acquisition (SCADA) systems, human machine interfaces 
(HMI), programmable logic controllers (PLCs) and other field devices are able to control physical processes within industrial envi
ronments. Traditionally, they form the core of industrial infrastructures. In the course of the Industry 4.0, however, these industrial 
environments further converge with information technology Rubio, Roman, and López (2017). For instance, sensors measuring the 
conditions of the respective physical processes to control are increasingly installed. This sensor data as well as the ICS systems are 
integrated to corporate IT systems in order to centrally analyze and manage information about the industrial environment. 

The Digital Twin (DT) presents one of the key concepts reflected in the Industry 4.0 movement. In Industry 4.0, the DT can generally 
be defined as a digital representation of an industrial asset over its entire lifecycle Boschert, Heinrich, and Rosen (2018). To represent 
and to further monitor its counterpart, the DT incorporates all kinds of asset-relevant information. This includes a multitude of 
generated sensor data from Industry 4.0 assets, which are united in DTs. Depending on the underlying asset, different lifecycles are 
covered by the digital twin. From this follows that different participants involved in the lifecycle might provide information for the DT 
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or need to gather data managed by the DT (DT data sharing) Dietz and Pernul (2020a). 
To achieve information management and sharing in Industry 4.0 with DTs, some obstacles arise. To manage DT data, involved 

lifecycle parties need access to the DT. Although the different parties participating in these processes work together, they each pursue 
different goals. Consider the lifecycle parties involved in an industrial plant, where a DT incorporates all relevant data. The manu
facturer of the plant’s motors should not gain access to the data about the plant’s current status, but should get feedback whenever the 
motor is maintained in order to optimize the motor’s construction and enhance its manufacturing process. In contrast, the maintainer 
of the plant’s motors should only get access to the motor’s current status and the components the maintainer is not responsible for, but 
not to any other component’s status of the plant. Thus, the trust when sharing data via the DT is not given per default Malakuti and 
Grüner (2018). As a result, confidentiality and access control issues arise Dietz and Pernul (2020b). These issues cannot be resolved 
with a centralized authority, especially in multi-tenant and large-scale environments Esposito, Tamburis, Su, and Choi (2020). 

This work addresses the lack of trust and security among multiple parties in DT data sharing by focusing on the following research 
question: 

RQ1. How can the data of Digital Twins be shared among multiple untrusted lifecycle parties while ensuring confidentiality, integrity 
and availability? 

Blockchains and their smart contracts possess various characteristics that can support the security of data sharing Berdik, Otoum, 
Schmidt, Porter, and Jararweh (2021). For instance, single and multi-party authentication can be implemented in a decentralized way 
Khan and Salah (2018) – without requiring trust in a central party. Moreover, blockchain solutions enable decentralized management 
of an asset’s lifecycle and supply chain Khan and Salah (2018). Blockchain solutions rely on Decentralized Applications (DApps), 
user-friendly web-based interfaces to interact with blockchains and their smart contracts. These characteristics offer a novel oppor
tunity to solve the aforementioned obstacles in DT information management. 

In this work, we show why a blockchain-based solution is suitable for DT data sharing and propose a blockchain-based information 
management solution for the DT and the involved lifecycle parties. We go beyond the state-of-the-art research by including DT 
components with fine-grained access control and providing scalability for sensor data sharing. Finally, our approach is evaluated with 
a DApp prototype implementation (EtherTwin), an industry use case, expert interviews as well as performance and cost measurements. 

The remainder of this work is organized as follows. We introduce related work in Chapter 2. The background of our research is laid 
in Chapter 3. Afterwards, we outline the logical design of our concept in Chapter 4. Chapter 5 describes the implementation of our 
EtherTwin DApp, which is subsequently evaluated in Chapter 6. Chapter 7 discusses our prototype in respect to the evaluation and 
future work. Finally, a conclusion is drawn in Chapter 8. 

2. Related work 

As DT research began to grow only during recent years, current works mainly propose theoretical frameworks. To date, various 
works mention the issue of the DT requiring strong security Kaur, Mishra, and Maheshwari (2020); Rubio et al. (2017); Uhlemann, 
Lehmann, and Steinhilper (2017), however applicable solutions are not provided yet. Especially, the secure management of DT data 
storage and exchange is important for practical use Malakuti and Grüner (2018). 

There have been few other works exploring the blockchain-based accompaniment of assets in supply chain processes with DTs 
Mandolla, Petruzzelli, Percoco, and Urbinati (2019) and smart objects Meroni and Plebani (2018). Still, a comprehensive imple
mentation of decentralized and secure data sharing for DTs is missing. Moreover, past works have shown the feasibility and advantages 
of blockchain-based access control for decentralized data sharing Di Francesco Maesa, Mori, and Ricci (2019); López-Pintado, Dumas, 
García-Bañuelos, and Weber (2019). However, there is no blockchain-based access control model tailored to the requirements of the 
DT lifecycle. 

In the following, we compare previous works that focused on blockchain-based data management in connection with the DT. 
Table 1 summarizes the comparison by considering organizational aspects of data management as well as implementation charac
teristics: The first few characteristics are of organizational nature, the following are implementation-related. 

Table 1 
Comparison of blockchain-based DT-related approaches by considering organizational as well as implementation characteristics. ○ not considered, ◐ 
partially considered, ● fully implemented.   

Huang et al. (2020) Hasan et al. (2020) Angrish et al. (2018) Dietz et al. (2019) 

DT definition product any asset machine events any asset 
Components ○ ○ ○ ○ 

Lifecycle phases early & medium early medium early & medium 
BC suitability ○ ○ ○ ◐ 
Implementation ○ ◐ ◐ ○ 

Open Source ○ ● ○ ○ 

Blockchain unknown Ethereum Ethereum unknown 
Off-chain storage ○ ◐ ◐ ◐ 
Encryption ◐ ○ ○ ◐ 
Access control ○ ○ ◐ ◐ 
User Interface ○ ○ ○ ◐  
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So far, few works have tackled blockchain-based data management in connection with DTs. Angrish et al. develop a prototype for a 
peer-to-peer network of manufacturing nodes Angrish, Craver, Hasan, and Starly (2018). Hasan et al. propose a blockchain-based data 
management approach for the DT creation process Hasan et al. (2020). Huang et al. Huang, Wang, Yan, and Fang (2020) propose a 
management approach to store all relevant DT data on a custom blockchain. Dietz et al. propose a conceptual approach for 
blockchain-based DT data management Dietz, Putz, and Pernul (2019). 

Thereby, the organizational aspects of the related works vary. While Huang et al. consider the DT being a product Huang et al. 
(2020), Angrish et al. define the DT as a mere collection of machine events Angrish et al. (2018). The majority of the works, as well as 
our work, see the DT as a representation of any asset Dietz et al. (2019); Hasan et al. (2020), be it a system, product or another physical 
object. Moreover, so far, none of the related works have tackled the DT as being a complex representation of an asset with 
sub-components. In contrast, we include components of the DT in our data model. In terms of lifecycle phases (cf. Table 2), we are the 
first to consider the DT management as beneficial for later lifecycle phases as well. Works to date have tackled either early Hasan et al. 
(2020), medium Angrish et al. (2018) or both of these phases Dietz et al. (2019); Huang et al. (2020). Additionally, we are the first to 
fully investigate the suitability of blockchains for DT data management by following a research methodology, while other works either 
neglect this aspect Angrish et al. (2018); Hasan et al. (2020); Huang et al. (2020) or only mention, but do not describe a method Dietz 
et al. (2019). 

To date, prototypical implementations have been either neglected Dietz et al. (2019); Huang et al. (2020) or only partially 
accomplished Angrish et al. (2018); Hasan et al. (2020). Our work is the first to fully implement a proposed DT data sharing approach. 
Next to our work, only one other work has made the implementation open source Hasan et al. (2020). All works with an imple
mentation part, however, make use of the Ethereum blockchain. In terms of off-chain storage, related work either do not suggest using 
it Huang et al. (2020), or suggest to use off-chain storage, but do not implement this part Angrish et al. (2018); Dietz et al. (2019); 
Hasan et al. (2020). In our EtherTwin prototype, a fully implemented off-chain storage is present. Encryption is proposed in two of the 
four related works Dietz et al. (2019); Huang et al. (2020), but is not described in detail and implemented – in comparison to our work. 
Likewise, access control mechanisms are mentioned in two works Angrish et al. (2018); Dietz et al. (2019) but are also not imple
mented. A user interface is only suggested by a single work Dietz et al. (2019), but we are the first to design and implement one. 

The present work develops a component-based data model and an access control model for common lifecycle participants. To 
summarize, we contribute to DT and blockchain research by providing: 

• fine-grained access control for DT data sharing in a decentralized setting without a trusted third party (TTP), ensuring confi
dentiality through encryption  

• full-featured open source prototype EtherTwin based on blockchain design patterns and state of the art DApp technologies 
(Ethereum, Swarm) with performance/cost measurements  

• evaluation based on an industry use case and expert interviews 

3. Background 

The background of this work is divided into three sections. Section 3.1 describes the foundations of DT research. Subsequently, the 
background of DApps is laid in Section 3.2. 

3.1. Digital twins 

The DT is an emerging paradigm focusing on an enterprise asset – usually, a system, product or process, along its lifecycle Boschert 
et al. (2018). Its core goal is to virtually represent this asset as close to reality as possible Boschert et al. (2018). The lifecycle phases 
covered by a DT strongly depend upon its corresponding asset. Nevertheless, common early phases are Idea, Planning and Design, while an 
asset’s Operation can be considered one of the medium phases and the asset’s Demolition is one of the final phases Dietz and Pernul 
(2020b). Thereby, each phase can span many years. For instance, planning a complex asset like global satellite networks could take up to 
10 years until Operation, while some legal regulations may command to safely store the asset after its decommission. Especially, these 
long and safety-oriented lifecycle phases require a tamper-proof data storage solution. By including various data sources and by 

Table 2 
General lifecycle characteristics (involved parties and data) of an industrial asset. Potentially involved lifecycle parties are highlighted in italic.   

Early Phases Medium Phases Later Phases 

Lifecycle phases Idea, Planning, Manufacturing Operation, Maintenance Demolition, End of Existence 
Accruing Data • Sketches  • Sensor data  • Condition of the components   

• Blueprints  • System logs    
• Manuals  • Maintenance reports  • Component’s location   
• Design models  • Simulations   

Involved parties Owner, Manufacturers, Distributors Owner, Manufacturers, Distributors, Maintainers Owner, Manufacturers, Distributors, Maintainers  
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integrating the multiple parties involved in these lifecycle phases, the DT unifies asset-specific data from previously separated domains 
Ríos, Hernández, Oliva, and Mas (2015). For instance, the asset’s composition, sensor data of the asset’s environment as well as simu
lation models can be included centrally in a DT Dietz and Pernul (2020a). This further promotes the complete traceability of assets and 
their components, especially if the assets (e.g. industrial plants, cars) comprise components from several manufacturers. Thereby, 
feedback loops across different lifecycle phases can be realized that support the concerned lifecycle parties when looking for improve
ment of their components Boschert et al. (2018). For instance, manufacturers can get insights from the operational phase of the asset and 
draw conclusions about the effectiveness of their components. 

For the remainder of this work, we put the person that owns the physical asset in the role of the Owner. Whenever this kind of 
Owner is meant, it is written in capitals. We further claim that the ownership of the physical asset implies the ownership of the digital 
twin. Otherwise, two different parties respectively owning either one of them would commonly not trust each other. Thus, the 
interaction of digital twin and physical twin would not be achieved. 

Table 2 summarizes the common lifecycle phases and points out the potentially involved lifecycle parties and the accruing data in 
the respective phases. Note that the data is continuously transformed along the lifecycle phases. For example, sketches of an industrial 
asset might exist from the Idea phase, transform into a blueprint in the Design phase. Also, design models might be created in the Design 
phase and elaborated towards fully-fledged simulations in the Operation and Maintenance phase. In terms of the involved parties, 
italicized parties are only potentially involved. For instance, consider the Owner sketching the asset during the Idea phase. Afterwards, 
the manufacturer elaborates this sketch towards a blueprint (Design) and manufactures the asset (Manufacturing). Later on, the Owner 
commissions the maintainer to put the asset into Operation. 

Nevertheless, there are still some obstacles to overcome. Commonly, an industrial asset represents a complex system, product or 
process. As a consequence, a multitude of parties are involved. Consider an industrial plant consisting of various ICSs. Each of these 
systems potentially has its own manufacturer and in business life, they might be competitors. This leads to enormous trust issues, and 
towards current practices of each lifecycle party building their own DT Malakuti and Grüner (2018). Meanwhile, this practice con
tradicts the very idea of DTs. Furthermore, it results in the disappearance of the DT’s core benefits like feedback loops to other lifecycle 
phases and parties. To overcome current malpractices and to motivate users to share their data among parties with different trust 
levels, our research aims to provide a strong platform with sufficient security (i.e. access control mechanisms) among untrusted parties. 

3.2. Blockchain and decentralized applications 

To address the complex issues of the DT sharing ecosystem, we investigate if blockchain technology is suitable. Pedersen et al. 
propose a ten-step decision path to determine if blockchain is a good fit Pedersen, Risius, and Beck (2019). The ten requirements are 
outlined in Fig. 1. For the DT lifecycle, there are multiple parties with the need for a shared database, which may have conflicting 
interests and thus, varying trust levels (steps 1–3). While in theory the lifecycle parties could rely on a TTP service, the dynamics and 
variety of DT data sharing hamper the management through a TTP. As Table 2 highlights, various data and data types are involved with 
varying velocity and integrity requirements. Integrity of stored data is an especially important security concern in IoT environments 
Zhao, Chen, Liu, Baker, and Zhang (2020). A TTP represents a single point of failure and an attack could interfere with the integrity of 
the data, making it preferable to avoid third parties. Related research on data auditing has shown that blockchain technology is able to 
remove the need for trusted third parties Li, Wu, Jiang, and Srikanthan (2020), which suggests that it could be a good fit for our work. 
(step 4). Moreover, the participants of the lifecycle require different access privileges depending on their role and characteristics, which 
means there are differing rules governing system access (step 5). Although system access rules differ in practice, the rules of transacting 
with DT data do not change frequently (step 6). The blockchain’s immutable log is helpful to ensure integrity and traceability of all 

Fig. 1. Blockchain decision path by Pedersen et al. Pedersen et al. (2019).  
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changes to the DT data, for example, in case of security issues or malfunctions. Furthermore, the documentation of changes made to 
data items is required to meet compliance requirements for some DTs (step 7). The need for public access largely depends on the DT’s 
underlying asset and industry (steps 8 - 10). We do not make an assumption in this regard and design our application to work with both 
permissionless and permissioned networks. 

After determining that blockchain is suitable, we explain the software components required for building a DT information man
agement application. DApps are a new paradigm for developing distributed applications Xu, Weber, and Staples (2019). Application logic 
is fully decentralized, since front end code runs in the user’s browser and back end code runs in smart contracts on the blockchain nodes. 
Decentralization comes with the advantage of full transparency of the application code as well as auditability of changes to a smart 
contract state. Dynamic smart contract access control models can be used to authorize state changes Di Francesco Maesa et al. (2019). 

Full replication of blockchain data necessitates storing complex data elsewhere Baig and Wang (2019), leading to the concept of 
off-chain storage. A common approach is to use Distributed Hash Tables (DHTs), since they fit the decentralized paradigm well. Data 
items are content-addressed and replicated within the network based on a routing layer. Modern DHTs such as Swarm1 are based on the 
established and secure DHT routing technology S/Kademlia Baumgart and Mies (2007) and integrate well with blockchains such as 
Ethereum2. 

Blockchain smart contracts also need to ensure sufficient access control to prevent unauthorized modification of smart contract 
state. Numerous authors have developed access control concepts based on smart contracts. These are based on the existing access 
control models role-based (RBAC) Cruz, Kaji, and Yanai (2018) or attribute-based access control (ABAC) Rouhani, Belchior, Cruz, and 
Deters (2020), but there are also proposals for ciphertext-policy attribute-based encryption Badsha, Vakilinia, and Sengupta (2020). 
Zhang et al. present an access control framework for the Internet of Things (IoT) supporting flexible access control methods Zhang, 
Kasahara, Shen, Jiang, and Wan (2019). Rouhani et al. also provide a comprehensive overview of smart contract based access control 
approaches Rouhani et al. (2020). 

4. System model 

The following sections describe the logical structure of our DApp. Section 4.1 provides an overview of the DApp’s entities. Section 
4.2 explains the twin and its subparts, while Section 4.3 focuses on the authorization of participating parties. 

4.1. Overview 

To capture context, the component diagram in Fig. 2 provides an overview of the DT sharing approach. In our system model, a 
component diagram defines physical as well as logical components and their dependencies. Therefore, it is well suited to put software 
architectures like our DApp into context. 

Fig. 2 illustrates the connection between real-world asset, DT and the developed DApp. These components represent a greater 
architectural unit (subsystems). The first two subsystems present the sole DT paradigm, consisting of the DT and its real-world asset 
connected by the bi-directional communication interface. One of the two artifacts within the DT is asset data, e.g. the specification of the 
asset with its compositional structure and documents about the asset. The other artifact is the sensor data produced in the asset’s 
environment. To enable data sharing, the DApp is added. It includes the components Smart Contract, DHT and User Interface. The 
dependency relations show the association of the DT data to the DApp. For instance, the Smart Contract requires the specification data 
of the asset in order to be built (usage dependency). Moreover, the shared DT data is stored in the DHT: The manifest dependency shows 

Fig. 2. Component Diagram describing the Digital Twin Sharing Context.  

1 swarm.ethereum.org  
2 ethereum.org 
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that the logical DT artifacts physically manifest in the DHT of our proposed DApp. Finally, the user interface component provides 
access to the data for all participating lifecycle parties. 

4.2. Entity relationship model 

Fig. 3 illustrates entities and relationships for DT sharing with a DApp. The dashed borders show a logical grouping into three main 
components: Registry, Authorization and Twin Data. To keep track of all available twins, a single access point is needed, referred to as the 
Registry. Similarly, the Authorization group of entities represents the access control model, which is explained in detail in Section 4.3. 
Twin Data is derived from DT sharing requirements elaborated in our previous work Dietz et al. (2019). 

The on-chain entities contain metadata about the DT. The main entity of a DT is the Specification, comprising the Components of the 
real-world asset it is representing. Sensors and other data (abstracted with the term Document) are managed by associating them with 
the corresponding component. Moreover, for each DT External Sources such as legacy systems can be integrated. These can provide 
additional data to the already incorporated documents and sensor feeds. 

Off-chain entities (Specification Version, Sensor Entries, Document Version) contain full data and are linked to on-chain entities, as 
indicated by 1:n relationships in Fig. 3. 

4.3. Access control 

In order to share data securely, an authorization and access control policy is required. This way access to data items can be 
restricted to certain parties. For instance, a maintenance report of an asset’s component (e.g. of a PLC) should only be shared with the 
lifecycle parties of this component (e.g. the PLC’s manufacturer). Access control addresses this need by restricting the user operations 
for data objects. In our approach we follow a hybrid access control model, combining RBAC and ABAC. While a role refers to a certain 
organizational function, a particular attribute refers to a specific characteristic of a user. During the DT lifecycle, each user interacts 
with certain twin components, which constitute the user’s attributes in our model. While roles are predefined, these attributes allow 
access control on-the-fly. 

Our proposed approach is modeled after the RBAC-A (role-centric) combination strategy, where attributes are applied to constrain 
RBAC Coyne and Weil (2013); Kuhn, Coyne, and Weil (2010). Thereby, the user’s assigned role defines the base permissions, while the 
user’s additional attributes can further limit these permissions. The exclusive use of ABAC would create an unnecessary overhead of 
rules, which control the access of the user. This would further increase complexity, both in terms of attribute combination for the user 
and the subsequent access granting decisions. Our hybrid access control model for DT data sharing upholds essential RBAC advantages 
(e.g. ease of user provisioning) and enhances flexibility by integrating attributes. 

To provide a profound basis for later implementation, we elaborate a formalism of the access control used in our DT sharing 
approach. Italicized terms refer to entities from Fig. 3. Every sharing party is considered a User U := {u1,⋯,un}. In our hybrid access 
control approach, each user can have one Role R := {r1,⋯, rn} as well as several Attributes A := {a1,⋯, an} per DT. Components C :=

{c1,⋯, cn} serve a special purpose in this access control model, as they are used for modeling Attributes: A := a1,⋯,an | ai = c1 ∨ … ∨ cn. 
To continue, Permissions P := {p1,⋯, pn} are mainly derived from the user’s role but also from its attribute(s). This underlines the 

hybrid RBAC-A mode in a role-centric realization Kuhn et al. (2010): Roles determine the basic permissions, while some of these 
permissions are limited by the users’ attribute(s). The permissions usually specify the access to an object O := {o1,⋯, on} and the 
allowed operation Op := {op1,⋯,opn}. Objects are always associated to a component to link the asset-relevant data to the component 
they belong: o → c | o ∈ O ∧ c ∈ C. This results in the following definition of Permissions: P = Op × O, whereby it can be concluded 
that p → c. 

The n-m relation of users to roles is expressed by UR = U× R. Likewise, the user to attributes relation can be described as UA = U ×

Fig. 3. Entity Relationship Model of the DApp.  
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A. Mapping the role-attribute combination to a user results in: 

assign users(r, a) = u ∈ U | (u, r) ∈ UR ∧ (u, a) ∈ UA 

Thereby, the mapping MUR describes the set of actual assignments of users to roles, while MUA determines the set of assigned at
tributes to users. Similar to the mapping above, the m-n relation between permissions and roles are specified by PR = P × R. Finally, 
permissions are mapped to role-attribute combinations while the attribute restricts the role permission and MPR describes the set of 
actual assignments of users to permissions: 

assign permissions
(
r, a

)
= p ∈ P | (p, r) ∈ PR ∧ p → c | c ≡ a  

5. Decentralized application architecture 

Based on the system model elaborated in Section 4, we choose appropriate technologies and standards to implement a DApp for DT 
data sharing in Section 5.1. We implement our entities by leveraging several blockchain design patterns (Section 5.2). To showcase the 
inner workings of the DApp, the most important data flows for DT management are described in Section 5.3. The concomitant access 
control implementation is detailed in Section 5.4. 

5.1. Technology selection 

For the DApp prototype we rely on the Ethereum blockchain, which is commonly used for research, e.g. in blockchain-based 
business process management Haarmann, Batoulis, Nikaj, and Weske (2018). It offers the Turing complete smart contract program
ming language Solidity and has a large developer community, resulting in advanced development tools and vulnerability scanners 
Ayman, Aziz, Alipour, and Laszka (2019). 

Fig. 4 depicts the technical architecture of the EtherTwin DApp. A User Interface simplifies the interactions of the DT lifecycle 
participants, such as creating twins and uploading data. For trustless interaction with the blockchain it is implemented using the single 
page application JavaScript framework Vue.JS3 – a server is only needed to serve static assets. The module ethereumjs-wallet is used 
for managing the user’s blockchain account, providing access to the user’s public and private key. Key pairs are dynamically created on 
first access and stored in the browser’s local storage for future visits. 

Web3.JS is used to send transactions signed with the private key to the Smart Contracts on the Ethereum blockchain. The front end 
is connected to an Ethereum blockchain node through a WebSocket connection. WebSockets improve performance over HTTP con
nections by providing a two-way communication channel between the client and the Ethereum node. This avoids the need to set up 
individual HTTP connections for each request Fette and Melnikov (2011). WebSockets also enable subscription to smart contract 
events (publish-subscribe style), which is utilized by the Device Agent for synchronization purposes. During development, we observed 
a significant speed up in page load times after switching to an RPC connection based on WebSockets. 

The erebos module4 reuses the blockchain account to upload data to the Off-chain Storage based on the Swarm DHT. While Swarm 
is mostly known for its permissionless test network, it can also be deployed as a private DHT with a fixed set of peers. Swarm reuses 
Ethereum accounts as its identity system, which simplifies its integration as off-chain storage. Additionally, the data types used in both 
systems are compatible: References to Swarm data are encoded as 32 byte SHA3 hashes, which can be stored in a Solidity bytes32 
variable in the smart contract. For dynamic content, Swarm provides Feeds. Feeds have a fixed address specified by user (Ethereum 
account) and topic (any SHA3 hash). They can only be updated by their owner with a public-key signature. Any Swarm user can read- 
access the most current and past updates. This concept is useful for sharing file keys and real-time sensor data under a fixed address, 
despite Swarm’s content-addressed storage. Ethereum Swarm Contributors (2019) 

Fig. 4. Technologies used in our prototypical implementation of DT data sharing.  

3 vuejs.org  
4 erebos.js.org 
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The Device Agent bidirectionally synchronizes the DT’s underlying Asset with the decentralized DT on Ethereum and Swarm. It 
runs as a node.JS5 background process and monitors new sensor data from the asset, which is then uploaded to Swarm. 

Like other authors creating DTs Eckhart and Ekelhart (2018); Schroeder, Steinmetz, Pereira, and Espindola (2016), our work relies 
on Automation Markup Language (AML), which is defined in the industrial standard IEC 62714. AML describes the specification of the 
asset including its components and their logic. Components are derived by parsing the AML-based asset specification. 

5.2. Design patterns 

Several blockchain application design patterns Xu, Pautasso, Zhu, Lu, and Weber (2018) are used in our prototype to address the 
requirements of DT data sharing. A Contract Registry pattern keeps track of individual DT contracts. A Factory Contract pattern is used to 
instantiate individual DT sharing instances. The access control model from Section 4.3 is implemented using the Embedded Permission 
pattern and implemented in the separate Authorization contract. The Multiple Authorization pattern is used to ensure that all sharing 
parties agree before changes to a DT contract are made. The Off-chain Data Storage pattern is used to meet the data volume and latency 
requirements. The Device Agent implements the Reverse Oracle pattern to mediate between the industrial asset and the distributed 
ledger. It monitors events occurring on the asset and publishes sensor data for authorized parties. Additionally, the agent is responsible 
for managing and distributing the symmetric file keys used for encrypting off-chain data, as detailed in 5.4. 

5.3. Data flow 

Fig. 5 shows how the contracts interact during the deployment, twin creation and sharing phases of the DT lifecycle. 
Deployment. Initially, the Registry and Authorization contracts are deployed by the blockchain consortium initiator. The Spec

ification contract template is deployed, but not yet instantiated as it is twin-specific. 
Registration. When a user first opens the app, a new Ethereum account is created, represented by an Ethereum public-private key 

pair. The public key is shared off-chain by publishing it on the account’s Swarm Feed. This avoids on-chain storage costs and allows 
anyone to retrieve the public key from the corresponding Swarm Feed. To improve usability and to avoid the need to share addresses 
out-of-band, we also register a mapping of the user’s Ethereum address to a username on the Authorization contract. 

Twin Creation and Sharing. On twin creation, the Owner provides a specification, which is parsed to extract the twin’s com
ponents. A transaction is sent to the Registry Contract, which creates a new Specification Contract instance based on the provided data. 
In the authorization contract, the access control attributes of the newly created twin are initialized with the provided components. The 
AML-formatted specification is stored on the DHT and included with a hash reference. After a twin has been created, the Owner may 
share it by adding a role to the lifecycle participant’s blockchain account. 

Twin Data Sharing. Each transaction intending to create, update or delete an entity of the twin must first be authorized through 
the Authorization contract. It should be noted that deletion only removes the entry from the current state; the state’s history is 

Fig. 5. Sequence diagram showing initial deployment and user interactions with the smart contracts and DHT.  

5 nodejs.org 
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preserved on the blockchain. If the action is authorized, the corresponding state change is registered in the smart contract state. For 
documents and specification version updates, the same procedure applies, except that metadata such as the filename remains 
unchanged. 

Sensor Feed Updates. Due to latency requirements and to reduce the number of costly smart contract transactions, sensor data is 
shared off-chain. After a sensor is registered on-chain, the Device Agent connects to the corresponding component sensor and sub
scribes to its sensor data. Each new sensor entry is encrypted with the component’s sensor encryption key and published to the sensor’s 
Swarm Feed. 

5.4. Access control implementation 

In the following the decentralized implementation of the formal access control model detailed in Section 4.3 is described. 
Authentication. Authentication is based on blockchain accounts, which consist of a private key and an address. Identities are 

represented by addresses, which are created by hashing the public key. They are used for signing transactions and sharing confidential 
data intended for specific participants. 

Authorization. Data stored on-chain is implicitly accessible to all participants storing the blockchain. For this reason, only met
adata and off-chain references are stored in smart contract state. State change transactions require authorization by the Authorization 
contract authorization, with component-based entities (documents, sensors) also requiring the corresponding component attribute. 
The append-only nature of the blockchain ensures traceability of all changes. 

The default mapping of permissions to roles is shown in Table 3. Permissions comprise the CRUD operations for each of the main 
sharing objects Twin, Document and Sensor. The entities External Source and Specification do not have separate permissions and instead 
inherit the Twin permissions. Role and attribute mappings are controlled by the DT Owner and can be modified for each individual DT. 
For example, permissions may be removed from a role or attributes added to a user. These permissions are enforced on-chain by the 
Authorization contract. Read permissions for off-chain data are enforced by encrypting all data related to off-chain entities (Specifi
cation Version, Sensor Entry and Document Version). The encryption key is shared only with authorized users. 

Encryption. All data is AES-256-encrypted before being uploaded to the Swarm DHT. Permissions are enforced by sharing a public- 
key encrypted version of the symmetric file key. Since Ethereum uses public keys based on elliptic curve cryptography, we rely on the 
Elliptic Curve Integrated Encryption Scheme (ECIES). However, Ethereum addresses are hashes of the public key and not the public key 
itself, which means they cannot be used for encryption. Therefore, participants additionally share their public key on their personal 
Swarm Feed (identified by their account address). 

The file keys are then distributed on a Swarm Feed, which allows dynamic off-chain updates when new users gain permission. For 
the specification file, the asset Owner manages the file keys. For component-based entities, the file keys are managed by the Device 
Agent. The Device Agent must be trusted, since it has full access to the asset. It is thus able to enforce on-chain permissions for off-chain 
data continuously. 

The Device Agent creates two unique symmetric keys for each component (for documents and sensors). File key recipients are 
determined based on roles and attributes stored on-chain. The corresponding algorithm for creating file keys is shown in Algorithm 1. 
The formal notation is based on Section 4.3. The algorithm must be executed for each twin before any files can be uploaded, since it 
distributes the symmetric keys needed for encryption. For this reason the Device Agent continuously monitors the blockchain for newly 
created twins managed by its address and associated permission updates. This is achieved by subscribing to contract events emitted by 
the Authorization contract. The Device Agent also subscribes to attribute and role change events. On each event, on-chain permissions 
are retrieved and the corresponding file keys are added/removed accordingly. 

6. Evaluation 

To evaluate the proposed DApp architecture, we follow a methodological approach based on Venable et al.’s framework for 
evaluation in Design Science Research Venable, Pries-Heje, and Baskerville (2012). The goal is to ensure both rigor and efficiency of 
our research. In our ex-post evaluation, we utilize both artificial (prototype, technical simulation) and naturalistic (case study, expert 
interviews) evaluation methods. 

Table 3 
Role mapping for entity Create/Read/Update/Delete permissions. ∼: Permission depends on presence of component attribute.  

Permission Twin Document Sensor  

C R U D C R U D C R U D 

Device ⨯ ✓ ⨯ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ ✓ ✓ ⨯ 
Owner ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Manufacturer ⨯ ✓ ⨯ ⨯ ∼ ∼ ∼ ⨯ ⨯ ∼ ⨯ ⨯ 
Maintainer ⨯ ✓ ⨯ ⨯ ∼ ∼ ∼ ⨯ ∼ ∼ ∼ ⨯ 
Distributor ⨯ ✓ ⨯ ⨯ ∼ ∼ ∼ ⨯ ⨯ ⨯ ⨯ ⨯  
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We first describe the EtherTwin prototype and its user interface in Section 6.1. The prototype is evaluated with several technical 
experiments concerning latency and cost in Section 6.1. Its practical application is explained via an industry use case in Section 6.3. 
Finally, we interview several industry experts regarding the prototype’s benefits and remaining challenges in Section 6.4. 

6.1. Prototype 

The EtherTwin prototype is available on GitHub6, including a video demonstrating the use case illustrated in Section 6.1. It consists 
of about 3000 single lines of code (SLOC) for the DApp and Device Agent, as well as 400 SLOC for the smart contracts. We analyzed all 
smart contracts for vulnerabilities using the SmartCheck vulnerability scanner Tikhomirov et al. (2018). Hereafter, screenshots are 
presented to show the prototype’s functionality. 

The prototype’s start page is illustrated in Fig. 6. It gives an overview of the twins the user is involved with, and shows the role of 
the user for each twin. The navigation bar shows the available pages for the selected twin that is highlighted in gray. Navigation to the 
respective pages is handled by clicking on the respective icon in the twin’s row. The icon shown on the very right of the navigation bar 
provides a visual representation of the user’s network address. It leads to the account page, containing information about the network 
and current user. 

Fig. 7 contains three screenshots that show the component-based organization of the prototype per twin. The screenshot on the 

Fig. 7. Screenshots of the prototype’s component-based structure and information management.  

Fig. 6. Screenshots of the prototype’s home menu.  

6 https://github.com/sigma67/ethertwin 
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right shows the composition of the selected asset/twin with its components and sub-components. This structure is parsed from the AML 
specification, which is required for twin creation. The upper left screenshot illustrates the sensor feed capabilities. The screenshot on 
the lower left shows the existing documents per twin. Each document is thereby assigned to a component. For each component, 
documents from each lifecycle-phases can be uploaded. However, users can only download, upload or update a document to a 
component if they have the respective component attribute in the smart contract. In practice, each user should be assigned the 
component attributes that the user is involved with in the lifecycle. 

Fig. 8 shows the prototype’s role and attribute management page. In the EtherTwin prototype, the Owner of a twin can see all other 
involved users and their lifecycle involvement. Furthermore, the Owner can handle the access to the resources as shown in the 
screenshots below. The screenshot on the bottom left side shows how the user’s role can be changed, while the screenshot on the right 
side illustrates the adjustment of the user attributes. 

Further screenshots of the prototype can be found in Appendix A (Figure A1, Figure A2, Figure A3) and in our GitHub-repository7. 

6.2. Technical experiments 

To evaluate the performance of our prototype, we first consider latency of the interactions described in the prototype. Our pro
totype environment is set up on a Raspberry Pi using Parity Ethereum 2.7.2 and Swarm 0.5.7. The DApp and Device Agent were run on 
an i7-8550U CPU. 

When a new twin is created, the Device Agent must create the twin’s symmetric encryption keys before any data can be shared. To 
evaluate this latency, we benchmarked the runtime of Algorithm 1. The algorithm runs every time a DT is created or its permissions are 
updated. It only runs once the transaction is included in the blockchain, since it is triggered by smart contract events. The results in 
Fig. 9 show that the runtime is on the order of one to three seconds. This is sufficient for real-world scenarios, since sharing interactions 
are not immediate. The runtime is not significantly affected by the number of users the DT is shared with. It increases only slightly with 
the complexity of the asset specification (number of components). 

To ensure user adoption, interactions with the user interface should have low latency. Each time a smart contract transaction is 
issued, the user needs to wait for a blockchain confirmation. Therefore, we measured the latency of interactions with private and public 
blockchains in Table 4. 

Another aspect relevant for public blockchain deployments are transaction costs for the Ethereum smart contracts. The 

Fig. 8. Screenshots of implemented access control mechanisms.  

7 https://github.com/sigma67/ethertwin/tree/master/misc/Screenshots 
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cryptocurrency costs are shown in Table 4. Sub-second latencies demonstrate that the user experience is fluid, despite client-side 
encryption/decryption and network delays. Costs are also quite low except for Twin Creation, since a new contract is instantiated. 
The use case costs include each action once, except for Document Creation, since two documents are created. In practice, lifecycle 
participants should decide based on usage cost projections to either jointly run a private network with operational costs, or use the 
public Ethereum network with the associated transaction fees. 

6.3. Use case 

This use case illustrates how our EtherTwin DApp is used in practice by creating a DT based on real enterprise data that is provided 
during the Secure Industrial Semantic Sensor Cloud (SISSeC) project8. The SISSeC project focuses on introducing Industry 4.0 in small 
and medium enterprises (SME) and aims at securely unifying and analyzing machine data. The industrial assets targeted in the project 
are part of the manufacturing process of printed circuit board (PCB) panel prototypes of a small German enterprise. The central goal for 
the PCB panel manufacturer is to gather all data available about the machines, to unite and analyze the data. Thereby, novel insights 
such as the determination of flaws in the manufacturing process present the desirable outcome. 

Our DApp prototype unifies the available data of an industrial asset throughout all lifecycle phases. In this use case, we create a DT 
for the boring and milling machine that gouges holes into the PCB panels. The demonstration of the implemented use case can be found 
online9 and its manifestation can be gathered from the screenshots of the prototype (Section 6.1 and Appendix A). 

At first, the machine specification in the form of an AML-file is implemented to set up the respective smart contracts for the use case 
(cf. Fig. 2). Then the feed data from the machine is integrated from sensors, ranging from sensors determining the position of the drill to 
logs of the PLCs concerning the running program. Moreover, we unified asset-relevant documents like manuals of the machines’ ICSs10 

Thereby, the documents are assigned to their corresponding component. For instance, a manual of a Siemens S5 PLC is assigned to 
the PLCs of the boring and milling machine. Currently, we created user accounts for the PLC’s manufacturer, the machine operator and 
the maintainer of the machine’s motors for demonstration. However, there are other users that can be included, e.g. the manufacturer 
of the motors, the maintainer of the PLCs and HMI or the distributor of the barcode reader. 

Based on an interview with the CEO and the CIO of the firm that currently operates the boring and milling machine, we gather that 
our EtherTwin prototype meets their current needs for central collection of data about their machine. For example, when service is 
required, the operator usually has trouble providing the right information to the maintainer. However, this information is needed for 
the maintenance service to bring the right tools and rapidly assesses the machine’s state and problem. In their view, EtherTwin poses a 
solution to this issue. Moreover, they consider the component-based data management a useful strategy that facilitates their search of 

Table 4 
Latency (ms) and cost (ETH, €) for contract deployment and interactions. Gas price: 10 Gwei, 120 € /ETH.  

Action ms Gas ETH € 
Initial Deployment - 14,548k 0.14548 17.46 

Twin Creation 896 4576k 00.4576 5.49 
Twin Sharing 353 144k 00.0144 0,17 
Specification Version Creation 262 94k 00.0094 0,18 
Document Creation 485 254k 00.0254 0,50 
Document Version Creation 365 99k 00.0099 0,19 
Sensor Creation 374 95k 00.0095 0,18 
Attribute Update 276 50k 00.0050 0,10  

Fig. 9. Runtime values for Algorithm 1 for varying numbers of users and components.  

8 https://www.it-logistik-bayern.de/produktionslogistik/projekt-sissec 
9 http://ethertwin.ur.de. The use case can be tested with a demo Owner account with the private key 1bed7

c10358ece007522558c4801b84424750f5a626ce5c9093411c9fc197a6f, to be entered on the account page (top right icon)  
10 Please note that the SISSeC project is at an early stage, where more data about the machine is still to be gathered. 
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information about sub parts. Nevertheless, the interviewees also state that EtherTwin’s access control mechanisms are very valuable to 
prevent knowledge drain. Nevertheless, it is uncertain whether lifecycle participants have the required knowledge to install the 
proposed solution. 

This use case shows that our DApp supports our goal of unifying asset-relevant data among its lifecycle with its participants. This 
results in enabling a feedback loop among the machine’s lifecycle phases. The participants of the lifecycle phases can harness this 
information to optimize their own business. 

6.4. Expert interviews 

To validate our prototypical implementation of blockchain-based DT information management, we conducted semi-structured 
interviews with industry experts. The goal of the interviews is to determine the prototype’s conformance to practical requirements 
and to identify potential adoption barriers. 

Participants We conducted semi-structured interviews with ten industry experts from six different enterprises. The industrial do
mains the experts have experience with include engineering industries (4 experts), manufacturing (2 experts), logistics (1 expert) and 
IT firms and blockchain corporations (3 experts). Four of the investigated experts have a security background, while two of these are 
security information architects, whereby one is designing secure blockchain architectures. Another expert is responsible for security 
lifecycle and governance and the last one is tackling IoT security in particular. Two of the remaining experts work exclusively on 
blockchain technology and another works as an information architect. The last three experts are IT consultants. 

The experts have a cumulative 101 years of experience, ranging from 2 to 25 years with an average value of 10.1 years and a median 
of 7.5 years. This experience was gained in companies of various sizes, including both SMEs (with up to 249 employees) and large 
enterprises (up to 500,000 employees). The average enterprise size the interviewees are familiar with is 164,583 with the median at 
30,000 employees. 

Procedure To identify the opportunities and challenges of using our blockchain-based DT data management approach and to 
evaluate the implemented prototype, we develop three categories of questions for the interview. These categories are based on DT 
lifecycle aspects (1), the suitability of the blockchain approach (2) and the characteristics of the developed prototype (3). The 
questions for the interview are based on relevant literature. We follow Dietz et al. (2019) and Dietz and Pernul (2020a) to identify DT 
lifecycle aspects (1). For (2), we rely on Malakuti and Grüner (2018) and Rubio et al. (2017) that provide the problem area to which 
our approach poses a solution. To derive the questions for category (3), we derive the questions from the distinct features of our 
prototype (cf. Table 1). 

To evaluate and gain additional practical insights on the categories (1), (2) and (3), we conduct a semi-structured expert interview 
according to Lazar, Feng, and Hochheiser (2017). The interview is structured in the following phases:  

• Phase 1) Introduction. At the start, the participants are questioned about their expertise and practical experience. Subsequently, an 
introduction to our research problem and approach is given. Additionally, we guide each interviewee through our EtherTwin 
prototype. Before the experts are interviewed, we encourage them to mention any issues that emerge during the following phases.  

• Phase 2) Interview. In this phase, the set of questions corresponding to the three categories are posed. Thereby, the interview 
questions are deliberately stated in a generic way to enable experts to share their individual experience Lazar et al. (2017). The 
questions start off with lifecycle aspects (1), which represent the most generic questions, followed by requesting the experts’ 
opinion on the underlying blockchain approach (2). The last category contains the least generic questions and tackles our 
EtherTwin prototype (3).  

• Phase 3) Wrap-up. We summarize he experts’ main feedback. The expert is encouraged to state additional feedback on our research 
and EtherTwin prototype to help validate our approach. Moreover, areas requiring revision can be identified. 

The guideline to the expert interview, including the interview questions, procedure and research purpose, can be found in 
Appendix B. Each interview participant received a copy of the guideline in advance of the interview. 

Results We briefly describe the results of the interviews below, before discussing the experts’ suggestions for improvement in 
Section 7. 

In terms of relevant lifecycle aspects (1), the experts mentioned that there are additional roles at each operator that need separate 
permissions, for example engineers, managers, developers, analysts and security employees. Half of the experts believe that including 
relevant participants such as auditors and regulatory authorities could be beneficial. Moreover, 30% of the experts think it would be 
beneficial to include roles for public authorities, e.g. to manage the compliance to environmental law. Two experts mention that the 
Owner and operator may not be the same. For instance, the operator might only have leased the industrial asset, while the Owner 
might still be the integrator or another lifecycle participant. Moreover, some of the roles should be further distinguished between 
manufacturers of the components, the integrator of the components (the manufacturer of the machine) and the operator. Another 
helpful remark, mentioned by two experts, is that modeling sub-roles might be required. 

Six out of ten experts see the data for managing an industrial asset as dependent on various aspects, including the industrial asset 
itself, the lifecycle phases involved as well as the use case, as also other non-industrial devices could be modeled with our approach. 
However, the most important data was: 
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• sensor and operating data (50%)  
• cumulative information & analytics including dashboards (50%)  
• master data categorized into mechanical, electrical and IT-related (30%)  
• the relations among the components, e.g. dependencies, network (20%)  
• as well as information about hardware- and software and their modifications (10%) 

Three experts reckon the sensitivity of the data as a very important aspect, esp. when critical infrastructures and functions are 
involved. 

Information about an industrial asset is currently shared, but only in a limited way. According to the experts, Industry 4.0 sharing 
practices are currently still in an early stage. For example, ICSs are integrated to corporate IT systems in order to communicate with 
enterprise resource planning (ERP) and e-commerce systems. Moreover, according to the experts, current sharing practices involve only 
strategic partners. Nevertheless, the creation of greater collaboration platforms is planned – leaning towards the notion of an ecosystem of 
DTs. In practice, our sharing approach is thus seen as a future issue, while security is and will remain a pressing challenge. 

Thereby, the most important advantages of information sharing are collaboration opportunities and product improvement (70%), 
followed by transparency and recording (40%). Using the blockchain, the experts expect a very low rate of failure (availability) and 
manipulation (integrity). The greatest disadvantage are data ownership issues and the potential loss of valuable corporate trade secrets 
(70%). Four experts expect the risk of industrial espionage (esp. among the supply chain), resulting in an increase of the substitutability 
potential through rivals and in a reduction of lock-in effects. Nevertheless, two experts emphasized that the benefits certainly outweigh 
the downsides. 

Regarding blockchain suitability (2), the answers are summarized in Fig. 10. Most experts agreed that blockchain is suitable for 
managing DT data along its lifecycle. Nevertheless, some experts were skeptical and preferred a TTP over a blockchain solution for its 
simplicity. One expert noted that this solution should not be used for machine operations since that would require millisecond la
tencies. Another interviewee suggested that it should be used to track machine interactions, i.e. firmware upgrades and part changes. 

Finally, the user interface of the EtherTwin prototype (3) was received positively. All participants agreed that it was well suited to 
the task at hand. Adjectives used for description were intuitive, clear and modern. One expert argued that the developed user interface is 
not needed in practice, since the backend should be fully integrated with existing systems, such as condition-based maintenance 
systems, ERP and product data management (PDM). 

When asked for estimates of practical performance requirements, the experts provided varying estimations based on their expe
rience. While an SME with 10 manufacturing machines may create two twins of these machines per year, an automotive manufacturer 
may create one per produced car, or as many as 10,000 per month. Estimates for shared documents for a twin also ranged from one 
document per day to a few documents per year, depending on the amount of shared documentation (i.e. aircraft production requires a 
large number of accompanying documentation material). For sensor data, raw sensor logs can result in significant data volume and 
velocity (up to terabytes/day), but not all of this data requires sharing. Experts suggested that only non-nominal or aggregated sensor 
data needs to be shared, resulting in a volume around hundreds of entries per hour. 

7. Discussion 

Hereafter we discuss the results of the evaluation, the resulting limitations and how the experts’ feedback can be used to improve 
the prototype in the future. We start with discussing the lifecycle aspects in Section 7.1. At last, performance (Section 7.2) and security 
(Section 7.3) aspects are discussed. 

7.1. Lifecycle 

Access Control. Additional lifecycle roles (e.g. an auditor or government authorities) could be implemented by updating our 
Authorization Contract. This includes the possibility for sub-roles and inheritance, for example to separate permissions for a technician 
and financial controller at the manufacturer. Delegation of rights could be achieved by including permission delegations in ABAC, for 
which several strategies have been proposed Servos and Osborn (2016). Another suggestion concerned the need for time or 

Fig. 10. Expert evaluations regarding the suitability of the presented solution.  
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event-based access to data by lifecycle parties. The access control model could be expanded to include an expiry time for each attribute, 
which is validated whenever access is requested. EtherTwin provides a starting point that can be extended and specialized to fit 
practical use cases individually. Another recurring suggestion made by experts was a role-specific user interface. In addition to 
tailoring the available roles to the practical use case, a role-specific twin overview page could help users find the needed information 
faster. 

Data Governance. For collaboratively run applications, governance aspects are important to consider. Future software updates to 
the deployed smart contracts may be necessary to incorporate additional DT features. Code changes to deployed smart contracts are 
not trivial and require specific application patterns to avoid data loss. Upgradability of smart contracts can be achieved using a 
Contract Registry or a Data Contract pattern Xu et al. (2018). To create new twins with enhanced functionality, the existing Registry 
contract can be upgraded to allow for modular Specification contract templates. 

Data structure. Additionally, a data structure might be established that is not only based on the components (cf. Fig. 3), but 
categorizes mechanical, electrical and IT information as well. Future work could investigate how to integrate this categorization, e.g. 
as an alternative structure or as sub-structure for each component. 

Additional Data. Our prototype has few restrictions regarding data volume and variety. The additional information deemed 
relevant by the experts could thus be easily integrated. Additionally, simulation is a key part of DTs. EtherTwin currently supports 
upload of simulation data, but future work could investigate how simulations can be directly deployed in the user interface. For better 
usability, future work could also extend our prototype by including analytical dashboards. Experts suggested that each role should be 
able to get an at-a-glance overview of the asset’s state. Such a dashboard could include out-of-range sensor values, recently updated 
documents, asset performance metrics and risk indicators. 

Asset Control. Similarly, DTs should provide some control over the industrial asset. Firmware management and updates were 
suggested by experts as a potential use case for EtherTwin. Program code of PLCs could be uploaded through the user interface by 
permissioned users and automatically installed by the Device Agent, documenting all actions in the smart contract. This enables 
traceability and accountability of participants for each modification made to the physical asset. 

7.2. Performance 

On-chain. The twin and document creation rates estimated by the experts do not present a challenge for a prototype, as even the 
maximum values are within the performance limits of Ethereum and Swarm. Private Ethereum blockchains support between 50 and 
100 transactions/second Dinh et al. (2017), which implies that more than 4 million twin interactions are possible per day (i.e. 
document creation, sensor creation). 

Off-chain. Experts mentioned that multiple events might need to be shared per second for a specific sensor. However, Swarm is 
currently restricted to one update per feed per second. To deal with this restriction, sensor feeds are updated once per second with 
batched sensor updates from the Device Agent. Thus, no data is lost and failure data is shared in a timely fashion. This restriction 
precludes real-time monitoring and control of assets, as pointed out by an expert. 

7.3. Security 

Research Question. With our research question we aim to develop secure lifecycle information management for DTs: 

RQ1. How can the data of Digital Twins be shared among multiple untrusted lifecycle parties while ensuring confidentiality, integrity 
and availability? 

Our prototype provides confidentiality by including fine-grained access control as well as encryption. All experts agreed that access 
control and the concomitant encryption are essential for business adoption (cf. Fig. 10). On-chain data integrity is assured by the 
immutability of the blockchain and the full replication of data among the participating nodes. Off-chain data integrity is provided by 
maintaining the DHT encryption key and sensor feeds through the Device Agent controlled by the Owner. Additionally, Swarm feed 
updates must be signed and are append-only, so integrity of past entries is maintained. In terms of availability, our decentralized 
approach enables the participants to manage their own nodes to maintain fully replicated copies of on-chain and off-chain storage. The 
proposed architecture relies on three distinct systems to function properly: the blockchain network, the DHT and at least one Device 
Agent per organization. Due to the resulting complexity, consequences of failure should be properly considered:  

• Blockchain node failure: If an organization’s blockchain node crashes, it will be unable to access the DApp as it relies on the 
blockchain node as a data source. This would not affect other organizations. If > 1

3 of all blockchain nodes in the network fail, write 
transactions are no longer available for all participants  

• DHT node failure: If the DHT node is unavailable, the organization will be unable to retrieve the DT specification, documents and 
sensor data. Other organizations are unaffected, unless they are trying to retrieve Twin data of the crashed organization for the first 
time 
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• Device Agent failure: A failed Device Agent implies that encryption keys will not be updated on permission changes while it is 
down. Thus, newly shared data for its twins will not be available to the sharing recipients. Additionally, sensor data will not be 
updated. 

Encryption. Despite these already built-in security measures, sharing business data with external entities bears risks for enterprise 
security. While data is encrypted, loss of the encryption key or compromise of the elliptic curve/AES encryption schemes could lead to 
access by unauthorized parties. Since data cannot be removed from other nodes once uploaded to the DHT, there is an inevitable loss of 
control that comes with sharing encrypted data. Due to the distributed nature of the DHT, read access to shared data cannot be 
revoked, and it is not possible determine which users actually accessed DHT data. Safeguarding the Device Agent and the encryption 
keys are thus paramount to data security in our approach. The prototype could be improved in this regard by hiding private key 
information in the user interface and using the Web Cryptography API11 instead of the browser’s local storage. In addition, the sharing 
enterprise must rely on the recipients to protect the encryption keys and data as well. Future research could also investigate future- 
proofing the encryption procedures by utilizing quantum-proof schemes. 

Misuse. Another consideration mentioned by an expert is misuse potential at the time of data entry. For a decentralized appli
cation, besides signature checks there is no way of checking the authenticity of uploaded data. A malicious lifecycle participant could 
thus upload false information that cannot be deleted. Nevertheless, the versioning system in EtherTwin ensures that past versions of 
data remain available. 

Public blockchains. If a public blockchain is used, confidentiality of on-chain metadata becomes a concern. Since on-chain data is 
not encrypted, participants should avoid including confidential information in metadata. If this is maintained, the contracts can be 
deployed on the public Ethereum blockchain and there is no need for participants to operate a blockchain infrastructure. To ensure 
infrastructure control and data confidentiality, both the Ethereum blockchain and the Swarm DHT can also be set up as private 
networks. Permissioned Ethereum networks may use a more resource-efficient byzantine-fault tolerant consensus algorithm such as 
IBFT 2.0 Saltini and Hyland-Wood (2019). 

Identity Management. Usability could be improved by mapping Ethereum addresses to human-readable names. Organizations 
may associate employee identities in existing identity management systems with Ethereum key pairs to enable single sign-on. Future 
research could investigate how to best implement a mapping of enterprise identity to blockchain identity. 

8. Conclusion 

To conclude, the EtherTwin DApp implements the complex DT sharing requirements of the Industry 4.0 landscape without the need 
for a TTP. This is achieved through a fine-grained blockchain-based access control model coupled with encrypted off-chain data 
storage. The open source prototypical implementation is based on Ethereum and Swarm. Additionally, we evaluate our model through 
use case elaboration and performance testing. Interview responses by industry experts validate the prototype’s practical suitability and 
provide avenues for future research. 

For example, our work on blockchain-based information sharing and access control may be extended to other areas, i.e. health DT 
data sharing, data marketplaces and machine certifications. Business processes can also be interpreted as DTs Dietz and Pernul 
(2020a). Approaches for blockchain-based business process management involving physical assets could thus be integrated with 
blockchain-based DTs modeled in our work. Additionally, our prototype could be enhanced by enabling data flow from the twin to the 
industrial asset. These interactions could involve calling PLC functions through the smart contract, or installing firmware updates. 
Finally, simulation environments could be directly integrated in the decentralized sharing platform, instead of only sharing simulation 
results as documents. 

Declaration of Competing Interest 

The authors declare that they do not have any financial or nonfinancial conflict of interests 

Acknowledgements 

We would like to thank the interviewed experts for their time and valuable contributions. Furthermore, we would like to express 
our thanks to our reviewers for their helpful suggestions. Part of this work was performed under the ZIM SISSeC project12, which is 
supported under contract by the German Federal Ministry for Economic Affairs and Energy (16KN085725). 

11 https://www.w3.org/TR/WebCryptoAPI/  
12 https://www.it-logistik-bayern.de/produktionslogistik/projekt-sissec 

B. Putz et al.                                                                                                                                                                                                            

https://www.w3.org/TR/WebCryptoAPI/
https://www.it-logistik-bayern.de/produktionslogistik/projekt-sissec


Information Processing and Management 58 (2021) 102425

17

Appendix A. Screenshots of the prototype  

Fig. A2. Screenshot of the user’s account page.  

Fig. A1. Screenshot of the ”share twin”-functionality.  
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Fig. A3. Screenshot of the AML-structured specification of the asset.  

B. Putz et al.                                                                                                                                                                                                            



InformationProcessingandManagement58(2021)102425

19

Data: A set of twins T = (t1, . . ., tn) with mappings for roles MUR
t , permissions MPR

t , attributes MUA
t and a set of components Ct.

Result: A set of encrypted file keys f ktcu∀t ∈ T, c ∈ C, u ∈ Ut used to decrypt data Dtcn∀n ∈ 1.N and uploaded to DHT feeds owned
by the Device Agent.

1: function createFileKeys(t)
2: Ct ← getComponents(t) . retrieve permissions from smart contract
3: MUR

t ← getRoleAssignment(t)
4: MPR

t ← getPermissionAssignment(t)
5: MUA

t ← getAttributeAssignment(t)
6: for each c ∈ Ct do . generate two symmetric keys sk per component
7: (skdoctc , sksensortc ) = Genc
8: end for each
9: for each u ∈ (MUR

t ∩ MUA
t ) do . prepare file keys f k for users

10: pku ← (DHT) getUserPublicKey(u)
11: for each c ∈ Ct do
12: r ← MUR

tu
13: for each d ∈ {doc, sensor} do
14: if (c ≡ a | a ∈ MUA

tu ) ∧ (pdread ∈ MPR
tr ) then

15: f kdtcdu = ECIES _enc(pku, sk
d
tc)

16: (DHT) updateFeed(c, f kdtcu)
17: end if
18: end for each
19: end for each
20: end for each
21: end function

Algorithm 1. Create off-chain file keys based on read permissions.  
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Appendix B. Guideline of the expert interview 
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